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Hamilton's variational principle is formulated for an unsteady heat-conduction 
process in a solid incompressible medium. We establish the form of the Lagrange 
and Hamilton functions as well as of the canonic equations for the process des- 
cribed by a hyperbolic-type differential equation. 

In recent years interest has grown in describing a heat-conduction process by the hyper- 
bolic-type equation [1-3] 

t~ 02T 1 0 T  
a Ot 2 @ divgradT,  a Ot (1) 

that satisfies the finite heat-propagation velocity (w T = v~/tr) in a solid incompressible 
medium. According to Lykov [2, 3], the effect of the finite heat-propagation velocity is 
noticeable for gases under conditions of a rarefied supersonic flow. Solution (i) was suc- 
cessfully used in [4] to describe the heat-conduction process of dispersed systems. 

We must note that even in the simplest cases (invariable thermophysical properties of 
the material, linear boundary conditions) the analytic solution of Eq. (i) is distinguished 
by its complexity [5]. Here we are interested in the possibility of applying a mathematical 
apparatus widely used in analytic mechanics -- the so-called Lagrange formalism -- to solve 
heat-conduction problems that can be determined by Eq. (i). Attempts to construct a Lagrange 
formalism to describe heat-conduction phenomena have been undertaken repeatedly. 

Such an attempt is made in [6] with the equation 

l OT 02T 
== _ _ _  a Ol ~ .,, (2) 

o x -  

that satisfies the heat propagation with an infinitely large velocity (t r § 0, ~T § ~). Here 
Morse and Feshbach proceed from the stvdy of a pair of differential equations, one of which 
is the initial equation (2) and the other is conjugate to it. 

Our method of introducing the conjugate equation is extended to the hyperbolic-type equa- 
tion of heat conduction (i), and an analogy of phenomena in mechanics and heat conduction is 
developed on the basis of Hamilton's variational principle. 

For definiteness we study a temperature field measured along one axis (the x axis) that 
is characterized by the equation 

t~ c32T 1 0 T  O2T 
. . . . .  .~ - -  ( 3 )  
a OP a Ot dx 2" 

We i n t r o d u c e  an  a d d i t i o n a l  e q u a t i o n  c o n j u g a t e  t o  ( 3 ) ,  

t r OZT~ 1 0 T  1 02Ta 
- -  (4) 

a Ol "~ a Ot Ox ~ '  

and w r i t e  t h e  s y s t e m  o f  e q u a t i o n s  (3) and  (4) i n  d i m e n s i o n l e s s  f o r m ,  

02ql t;3ql r 02ql O, (5 )  
OX 2 & &~ 
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a2q~ + ~  rO2q2 = o 
OX 2 & O~ ~ 

We i n t r o d u c e  the  L a g r a n g i a n  f u n c t i o n  by t h e  e q u a t i o n  

1 
~ = ~ [ q ~ ( X ,  x), %(X, ~)] : q; q~--r'q~q2 +-~(%4~--q~4,)--%, 

where 

(6) 

(7) 

Oq~, aq~ 
q~ = - ~ '  4i = ~ (i = 1,2) and %= cons< 

We are easily assured that the assumed Lagrangian equation allows us to obtain the system of 
equations (5) and (6) by substituting (7) into Ostrogradskii's equations 

aq2 N\a--~[/--~ ~ =o. 

We recall that Hamilton's variational principle is formulated in analytic mechanics to des- 
cribe the motion of the system of material points 

6W-----6yL(t, q,, q*Odt=O ( i =  1, 2 , . . . ,  k), 
t :  

(9) 

where W is the Hamilton action; L is a Lagrange function; qi and qi = dqi/dt are generalized 
coordinates and generalized velocities of points of the system; ~ is a symbol of isochronic 
variation [7]. Using the variation procedure with the initial independence of the generalized 
coordinates taken into account, we can obtain from condition (9) a system of k differential 
equations of motion for the system 

d {OL)  OL = 0  ( i :  1, 2 , . . . ,  k), (10) 
dt \, Oqi] Oqi 

which are called Lagrange equations of the second kind. 

By introducing the momenta Pi = 3L/3qi and the Hamilton function 
k 

H=  Z p i q i - - L  , we can 

obtain equations of motion for the system of material points in another form, 

dqi - OH dpi _ OH (ii) 

dt Opi dt Oqi 
Equations (ii) are canonic Hamilton equations; here, for conservative systems, the Hamilton 
function H indicates the total energy of the system and remains invariable during its motion. 

We formulate the Hamilton variational principle for the phenomena of unsteady heat con- 
duction in a solid medium, as follows: 

TI aw=6j q (X, r 
% (V,) 

(12) 

where Vo = const is the volume of the body. In comparing Eqs. (9) and (12), we introduce the 
Lagrange function to describe the heat-conduction phenomena 

L ---- # ~ [ql (X, '0, % (x, '0] dV. (13) 
(Vo) 

We further develop the analogy of mechanics and thermodynamics and introduce the 
"momenta" by the equations 
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Taking Eq. 

o~ 

o~ 
t )  PI~ Oql 

(7) into account, we obtain 

Pz~ Oq~ 

o~ 
Po~  - -  Oq ~" 

(14) 

1 
Pl~ = ~ -  q2 - -  rq2, 

1 q, - -  rq,, 
2 (15) 

Pl,~ = q2, P ~  = q l .  

In addition, we introduce the Hamilton function 

h = Px-~'q~ @ P~,'q~. + Px.~q] - P.2.,:q'2 -- ,~.  

Taking Eqs. (7) and (15) into account, we find 

h = ql q2 - -  rqlq2 -;- eo. 

We can show that the Hamilton function 

(16) 

(17) 

1 1 

n = Vo ~o + 5 q; q;d~ - @;q~dX) 
0 0 

(1B) 

remains invariable in the process and indicates the total energy of the system that can be 
determined by Eqs. (5) and (6). 

In conclusion, we obtain a system of differential equations that describe the process of 
unsteady heat conduction and the canonic Hamilton equations (Ii) of analytic mechanics that 
appear by analogy. Here we proceed from the Hamilton principle (12). Taking Eq. (16) into 
account, we write the following for a body measuring along one axis (the x axis): 

"r l 

6 j j' (p~,~, + p~.A p,,~q; + p.~j2 - h) dXd~ = O. 
~= 0 

(19) 

After performing the variation operations and taking into account that 

we find from Eq. (!9) 

dplx 6q'o_, 
6P1~-- dqs 6P2x 

6pl ~ -- OPl~ 6q., . . . .  

Oq~ 

6 p ~ -  OP2~ 6 q l -  
Oq~ 

dp2x 

Opr~ 6q2, 
oih 

Op,_~ 6ql, 
oih 

0 Op=~ . Oh 

T t 0 

dp2x O h ]  [ ~  
o x  , dq; 7~q', , 

Due to the material independence of the "generalized coordinates" qz and q=, the equations in 
brackets should become zero, and from this follows the desired system of "canonic equations," 
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ap,, . a ' ap,, �9 oh ) o ( dp,x ql Oh ) 
Oq: q~ - -  ~ (P2~, ~ Oq 2 q~ Oq 2 = ,PEA , dq',,_ Oq'2 ' (21) 

( ) ( dh i _a_p_.~.! . a ap.zr Oh a P~x  i q~ ~ . 
aqt q"---%,P'~ ~ 001 q"--- aq-~- ==o-x dq; dq, , (22) 

We see that the "canonic equations" (21) and (22) have a more complex form than the classical 
equations (ii) of analytic mechanics. We are easily assured that in substituting the equa- 
tions for the "momenta" from (15) and the Hamilton functien from (17) into (21) and (22) we 
arrive at the initial system of equations (5) and (6). In this sense the "canonic equations" 
(21) and (22) are equivalent to the Ostrogradskii equations (8). 

NOTATION 

T, temperature; To = const, initial temperature of a body; T c = const, ambient tempera- 
ture; p, cv, h; coefficients of mass density, specific heat capacity at a constant volume, 
and thermal conductivity of material; x, coordinate; ~, linear characteristic dimension of a 
body along the x axis; t, time; tr, relaxation time; ~T, heat-propagation velocity; X = x/l, 

= (h/pcv)(t/12), r = (~/pcv)(tr/12), ql = (T- Tc)/(To- Tc) , q2 = (TI- Tc)/(To- Tc). 
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